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PACS 62.20.dj – Poisson’s ratio

Abstract – A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-
joint frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material.
The type of auxetic behaviour that can be detected by symmetry has Poisson’s ratio −1, with
equal expansion/contraction in all directions, and is here termed equiauxetic. A framework may
have a symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes
rotational axes of order n= 6, 4, or 3. If the reducible representation for the net mobility contains
mechanisms that preserve full rotational symmetry (A modes), these are equiauxetic. In addition,
for n= 6, mechanisms that halve rotational symmetry (B modes) are also equiauxetic.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – Auxetic materials (auxetics) have
the property that when stretched in one direction they
expand in a perpendicular direction, that is, they have
a negative Poisson’s ratio. Their proposed uses include
applications in medical, safety and sensing areas [1–5].
Auxetic deformations are closely related to dilatancy in
granular matter [6,7], negative normal stress in biopoly-
mers [8] and the negative Poisson’s ratio observed in
crumpled crystalline surfaces and membranes [9,10], see
also the review [11]. Auxetic properties are known to
affect physical properties, such as phonon dispersion and
wave propagation or attenuation [12–14]. The focus of
many theoretical studies of auxeticity is the identifica-
tion of mechanisms at the microscopic level that are
able to account for the macroscopic behaviour of auxetic
(meta-) materials. These typically involve modelling of a
structure in terms of a system of hinged rotating rigid
polygons [15–17] or, in a complementary approach, as an
infinite bar-and-joint framework. The bar-and-joint model
has been used to compile a catalogue of planar periodic
auxetic tessellations [18–20]. One striking observation that
emerges from examination of this catalogue is concerned
with the functional form of Poisson’s ratio for different
2D auxetic frameworks. There are two distinct patterns.
In many cases, Poisson’s ratio, ν, the negative of the ratio
of transverse to longitudinal strain, is a function of the
amount of strain. However, in some cases ν is constant and

(a)E-mail: holger.mitschke@fau.de (corresponding author)

equal to −1 for all values of strain, the unit cell changes in
size but not shape, and the auxetic behaviour for displace-
ment along this mode is isotropic (equiauxetic). A mate-
rial for which Poisson’s ratio attains its limiting value of
−1 has also been called maximally auxetic [21]. Exam-
ples of equiauxetic behaviour have been described [22–26].
From the catalogue [18], it is also clear that equiaux-
etic behaviour is associated with frameworks that have
certain symmetries. The catalogue contains examples of
equiauxetic frameworks with p6mm symmetry at equilib-
rium, where the displaced structure retains p6mm, p6 or
p31m symmetry. Other examples have symmetry p4mm
or p4gm, and retain p4mm, p4gm or p4 when displaced.
The aim of the present paper is to give a general

explanation for these observations, and to derive a
symmetry-based sufficient criterion for equiauxetic
behaviour of a 2D framework. The treatment is based
on Maxwell counting for bar-and-joint and body-and-
joint frameworks, extended to take symmetry into
account [27], as recently adapted to cover periodic 2D
and 3D frameworks [28].

A symmetry basis for equiauxetic behaviour. –
The qualitative idea needed to explain the proposed
connection between symmetry and equiauxetic behaviour
in 2D relies on the fact that the only affine deformation of
a continuous body in 2D that has rotational symmetry of
order greater than 2 is a uniform expansion/contraction.
Consider any deformation mode of the unit cell that
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preserves a rotation axis of order 3 or more. This deforma-
tion must be associated with equal strain in all directions,
implying a Poisson’s ratio of −1 for the mode in question,
which hence is equiauxetic.
What can be said about the symmetry of such a defor-

mation mode? In the language of point groups, charac-
ters and representations, familiar from Chemistry [29], the
mode must belong to an irreducible representation that
has character +1 under proper rotations (Cn)

q through
angles 2πq/n. In fact, this also implies that the mode must
be non-degenerate, as the kernels and co-kernels for degen-
erate modes of groups Cpv (p= 6, 4) preserve at most a C2
rotational axis (see [30]). This means that all distortions
within the space of doubly degenerate E-type vibrations
destroy any C6, C4, C3 rotational symmetry.
Candidates for equiauxetic modes are therefore limited

to those belonging to irreducible representations of A-type
(those having character +1 under the principal rotation
Cn for n� 3), and B-type (those having character −1
under the principal rotation Cn but +1 under (Cn)

2
). The

plane groups (and the point groups isomorphic with their
corresponding factor groups) that can support equiauxetic
modes are therefore limited to: p6mm (C6v), p6 (C6)
(A and B modes); p4mm (C4v), p4gm (C4v), p4 (C4),
p3m1 (C3v), p31m (C3v), p3 (C3) (A modes). Thus, in the
ordering used in the International Tables [31], the “auxetic
plane groups” are numbered 10 to 17.
In the following sections, we show how modes of the

required types can be identified for microstructured cellu-
lar materials, which are appropriately modelled as bar-
and-joint [32,33] or body-and-joint frameworks.

Symmetry and mobility of periodic bar-and-
joint frameworks in 2D. – It has long been recog-
nised that counting arguments can give powerful condi-
tions for rigidity/mobility of structures. The Calladine
extension [34] of Maxwell’s rule [35] gives the net mobility
(m− s) of a finite bar-and-joint 2D framework as

m− s= 2j− b− 3, (1)

where m is the number of mechanisms, s is the number of
states of self-stress of a pin-jointed framework with j joints
and b bars, and the constant term accounts for rigid-body
motions. The symmetry-extended equivalent of (1) is [27]

Γ(m)−Γ(s) = Γ(j)×Γ(Tx, Ty)−Γ(b)−Γ(Tx, Ty)−Γ(Rz),
(2)

where each representation Γ(object) describes the symme-
try of a set of objects (which may be joints, rigid elements,
points, vectors or other local structural or dynamical
motifs) in the relevant point group of the structure.
Γ(object) collects the characters χobject(S) of sets of
objects, i.e., for each symmetry operation S, χobject(S)
is the trace of the matrix that relates the set before and
after the application of S. The rigid-body terms, Γ(Tx, Ty)
and Γ(Rz), are the representations of the in-plane trans-
lations and the in-plane rotation, respectively. For further
details, see [29].

Frame (a) Frame (b)
Group C2 Group Cs

E C2 E σ
Γ(j) 6 0 6 0

×Γ(Tx, Ty) 2 0 2 0
= 12 0 12 0

−Γ(b) −9 −1 −9 −3
−Γ(Tx, Ty) −2 2 −2 0

−Γ(Rz) −1 −1 −1 1
= Γ(m) −Γ(s) 0 0 0 −2

Fig. 1: (Colour on-line) Two bar-and-joint frameworks. Both
(a) and (b) comply with the Maxwell rule (1), as expressed in
the columns showing how the different representations behave
under the trivial identity operation E; in each case the total
character given in the final line of the table is zero. The
symmetry-extended equation (2) confirms the zero count for
(a), where the extra symmetry operation is C2 and gives no
indication of mechanisms or states of self-stress. In case (b) the
fact that the total character under the σ-reflection operation
is −2 shows that there is at least one mechanism and one
state of self-stress. These can be identified as the expected
symmetry-breaking mechanism and a totally symmetric state
of self-stress.

The terms on the RHS of (2) describe, respectively,
the two-dimensional freedoms of the joints, the length
constraints enforced by the bars, and the removal of the
rigid-body translations and rotation. Each is a generalisa-
tion of the corresponding count in (1). Figure 1 shows an
example of a simple system for which symmetry provides
extra information not available from (1).
The scalar counting rule (1) is the character of the full

symmetry equation under the identity operation; it can be
extended to periodic structures. When proper account is
taken of the allowed degrees of freedom of the lattice [36]
(stretches and shear motions), the form of (1) appropriate
to a periodic system in 2D is [28]

m− s= 2j− b+1. (3)

Extending (3) to include periodic symmetry gives [28]

Γ(m)−Γ(s) = Γ(j)×Γ(Tx, Ty)−Γ(b)+Γa, (4)

where

Γa =Γ(Tx, Ty)×Γ(Tx, Ty)−Γ(Tx, Ty)−Γ(Rz), (5)

and all representations Γ are to be calculated in the
crystallographic point group isomorphic with the factor
group of the full plane group. The representation Γa
accounts for the difference in symmetry between the three
possible deformations of the unit cell and the two allowed
rigid-body displacements.
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(a) (b)

Fig. 2: (Colour on-line) (a) Kagome framework shown with
p6mm symmetry elements; (b) symmetry-detected B2 mecha-
nism, retaining subgroup p31m.

A convenient format for the application of this equation
to a periodic framework with some point symmetry is the
following tabulation:

C6v E 2C6 2C3 C2 3σv 3σd
Γ(j) 3 0 0 3 1 1

×Γ(Tx, Ty) 2 1 −1 −2 0 0
= 6 0 0 −6 0 0

−Γ(b) −6 0 0 0 −2 0
+Γa 1 −1 1 5 1 1

Γ(m)−Γ(s) 1 −1 1 −1 −1 1

given here for the kagome lattice (fig. 2) with factor group
P ∼=C6v in the notation of [37] which makes clear the
connection between the point group and the crystallo-
graphic plane group, in this case p6mm. One obtains
Γ(m)−Γ(s) =B2. The conclusion is that Γ(m) contains a
mechanism of B2 symmetry, and there are no symmetry-
detectable states of self-stress. The detected mechanism
is the known periodic collapse mode for the kagome
lattice [38], where alternate triangles rotate in opposite
senses, as seen in fig. 2(b). This, in fact, is an auxetic mode.
As an illustration of the additional qualitative informa-

tion provided by the tabulation, consider the C2 column in
this table. The third entry shows that all six freedoms of
the joints are reversed by the C2 operation; all three points
are unshifted by the operation, but it reverses the attached
x and y vectors. The entry for Γ(b) is zero as all bars
are shifted by the operation. The value of 5 for Γa arises
because the three allowed deformations of the unit cell are
symmetric under C2 but the two rigid-body motions are
antisymmetric (5 =+3− (−2)). The final total of −1 for
the character of Γ(m)−Γ(s) under C2 tells us that the
mechanism that we have detected by using (4) breaks this
symmetry of the lattice.
It should be noted that although equations such

as (2) and (4) can be powerful in revealing more detail
than would be accessible through scalar counting alone,
they do have an important limitation in that they
necessarily yield only the representation of the relative
mobility. If a structure has mechanisms that are

equisymmetric with states of self-stress, there will be no
evidence for them in Γ(m)−Γ(s). By definition, then, the
mechanisms revealed by (4) are symmetry-detectable. The
fact that symmetry-detectable mechanisms may become
undetectable on descent in symmetry can itself be used to
diagnose finite vs. infinitesimal mechanisms. The scalar
counterpart of detectability is that relationships such
as (1) and (3) give only a lower bound on the number of
mechanisms.

A criterion for equiauxetic behaviour. – Combina-
tion of the reasoning about rotational symmetry of auxetic
modes with the symmetry-extended mobility rule (4) leads
to the following statement.
Auxeticity criterion: A periodic 2D system with plane

group G and factor group P = G/T has symmetry-
detectable equiauxetic behaviour if and only if

1) P is isomorphic to a point group from the list C6v,
C6, C4v, C4, C3v, C3, and

2) the reducible representation Γ(m)−Γ(s) contains one
or more copies of an auxetic irreducible representa-
tion. The auxetic irreducible representations are: A1,
A2, B1, B2 in C6v; A, B in C6; A1, A2 in C4v; A
in C4; A1, A2 in C3v; A in C3. (Γ(m)−Γ(s) can be
computed according to (4) for bar-and-joint frame-
works, and (15) for body-and-joint structures)

For practical calculations it is useful to note the compo-
sition of Γa within the relevant point groups:

Γa =




A1 −E1 +E2 (C6v)
A −E1 +E2 (C6)
A1 +B1 +B2 −E (C4v)
A +2B −E (C4)
A1 (C3v)
A (C3)

(6)

An alternative way of reaching the same conclusion,
in the manner of [39], is to calculate the number of
times each auxetic representation occurs in the (reducible)
representation Γ(m)−Γ(s), i.e., to find the coefficients
n(Γi) in the expansion

Γ(m)−Γ(s) =
∑
i

n(Γi)Γi, (7)

where i runs over the irreducible representations of the
group. The coefficients n(Γi) can be found by using well-
known projection techniques [29]. It is straightforward to
show that the counts for the auxetic representations are:
C6v ∼= p6mm/T and C4v ∼= p4mm/T ∼= p4gm/T :

n(A1) = 2j1+ jm− (b1+ bm+ b2mm)+ 1,
n(A2) = 2j1+ jm− b1;

(8)
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C6v ∼= p6mm/T :

n(B1) = 2j1+ jm+ j2mm− (b1+ b.m.),
n(B2) = 2j1+ jm+ j2mm− (b1+ b..m);

(9)

C3v ∼= p31m/T ∼= p3m1/T :

n(A1) = 2j1+ jm− (b1+ bm)+ 1,
n(A2) = 2j1+ jm− b1;

(10)

C6 = p6/T and C4 = p4/T :

n(A) = 2j1− (b1+ b2)+ 1; (11)

C6 = p6/T :
n(B) = 2(j1+ j2)− b1; (12)

C3 = p3/T :
n(A) = 2j1− b1+1. (13)

Here, the numbers of joints and bars are those in the
asymmetric unit of the plane group, subscripted with their
(oriented) site symmetry symbol: j1 and b1 are in general
position; j2 and b2 are in special positions having 2-fold
rotational symmetry; jm and bm are on mirror lines; and
j2mm and b2mm are in sites of symmetry C2v ≡ 2mm. Dots
in (9) are used, in the fashion of [31], where necessary
to distinguish settings of the mirror line associated with
Cs ≡m.

Symmetry and mobility of periodic body-and-
joint structures in 2D. – The scalar and symmetry-
extended counting rules developed so far apply to the
bar-and-joint model of a repetitive structure. An alter-
native model is often employed to describe solid-state
materials, where the structure is considered as consisting
of rigid units connected through flexible joints [40]. For
some systems this model may be more appropriate than
the use of bars and joints, as will appear below in our
treatment of the “TS-wheels” tiling [18,20]. A symmetry-
extended counting rule for the mobility of periodic body-
and-joint structures has been derived [28] and the auxetic
criterion discussed above applies equally to this model.
The model for the 2D case considers the relative degrees

of freedom of a repetitive mechanical linkage consisting of
unit cells containing n bodies connected by g joints, where
in this case each joint permits a single relative rotational
freedom. The scalar counting rule is

m− s= 3n− 2g+1, (14)

where the RHS expresses the facts that each body has
three degrees of freedom in the plane, that each hinge
constrains two degrees of freedom, and that the repetitive
nature of the system gives the additional single freedom, as
discussed above in relation to (3). The symmetry extension
of (14) is cast in terms of properties of the “contact
polyhedron” C, which is in fact an infinite object, but
one for which we need only consider a repeating unit cell.
The vertices of C represent the rigid elements, and the

edges joints. As described in [28], the symmetry-extended
counting rule for this case is

Γ(m)−Γ(s) = Γ(v, C)× (Γ(Tx, Ty)+Γ(Rz))
−Γ‖(e, C)×Γ(Tx, Ty)+Γa, (15)

where Γa is the same representation as defined in (5).
With the aid of (4) and (15) we now have the conditions

for symmetry-detectable equiauxetic mechanisms in both
bar-and-joint and body-and-joint structures in 2D.

Examples. – We discuss a number of example frame-
works from [18] chosen to illustrate points of particular
interest. The names for the various frameworks are those
used in the catalogue, supplemented with the symbol for
the tiling from [41]. For each example the plane group, the
point group, and the net mobility are listed. The examples
range from overconstrained, withm− s negative, to under-
constrained, with m− s positive. Each is illustrated with
a picture showing the framework (in bold) and symmetry
elements marked as in the Internationl Tables [31].

Kagome. This is tiling (3.6.3.6), p6mm, 6mm(C6v),
m− s= 1. The tabular form of the symmetry-adapted
mobility calculation was given earlier. With the primitive
hexagonal unit cell (fig. 2), scalar counting gives m− s=
1, implying the existence of at least one mechanism.
The symmetry calculation reveals that this mechanism
is equiauxetic (and of B2 symmetry). As fig. 2(b) shows,
the plane group for the deformed configuration is p31m,
describing a lattice in which each triangle rotates in an
opposite sense to its neighbours. Numerical calculations
show that the mechanism is unique for the primitive unit
cell, in contrast to larger choices with ambiguous modes.
These latter contain several paths retaining different
symmetries. For instance, application of the given criteria
to a framework consisting of 2× 2 primitive unit cells gives
two equiauxetic modes: the above B2 mechanism and an
additional single A2 mechanism. Non-equiauxetic modes
with p2gg and p2 are shown in [38].

TS-wheels. This overconstrained framework is the 2-
uniform tiling (36; 32.4.3.4), p6mm, 6mm(C6v), m− s=
−3 (fig. 3(a)). Simple counting indicates only the existence
of three states of self-stress. Counting with symmetry, as
in the tabular calculation

C6v E 2C6 2C3 C2 3σv 3σd
Γ(j) 7 1 1 1 3 1

×Γ(Tx, Ty) 2 1 −1 −2 0 0
= 14 1 −1 −2 0 0

−Γ(b) −18 0 0 0 −4 −2
+Γa 1 −1 1 5 1 1

Γ(m)−Γ(s) −3 0 0 3 −3 −1

gives Γ(m)−Γ(s) =A2−A1−B1−E1, implying at least
one mechanism, of A2 symmetry, and four states of self-
stress, of symmetries A1, B1 and E1. The detected mech-
anism corresponds to concerted rotation of the hexagonal
“wheels”, with simultaneous collapse of the square motifs
to flattened rhombi illustrated in fig. 3(b).
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(a)

(c) (d)

(b)

Fig. 3: (Colour on-line) (a) The TS-wheels tiling shown with
p6mm symmetry elements; (b) A2 mechanism retaining p6
symmetry; (c) TS-wheels tiling shown as a body-joint model;
(d) the contact polyhedron for the body-joint model.

Numerical calculation [20] shows that the symmetry-
detected mechanism is the sole mechanism for this choice
of unit cell and remains so for larger frameworks composed
of n×n unit cells, for at least n� 6. By its symmetry,
this mechanism is equiauxetic. Experimental results for a
constructed cellular meta-material with rigid joints, and
finite-element simulations of the bar-and-joint framework
confirm this prediction of symmetry analysis [19].
The four states of self-stress predicted by symmetry

have respective representations A1, B1 and E1; the mech-
anism would therefore become equisymmetric with the
first state of self-stress if followed down from p6mm to
p6, satisfying a necessary condition for “blocking” of the
mechanism, implying that it might be infinitesimal in char-
acter rather than finite [42,43]. However, it is easy to see
here that the relevant state of self-stress is localised within
the hexagonal wheel and cannot block the rotational mech-
anism. The A2-symmetric mechanism will continue all the
way to the collapsed state where all quadrilaterals have
flattened out, yielding a degenerate version of the kagome
framework with superimposed bars.
The irrelevance of the “internal” state of self-stress

to blocking the mechanism is readily apparent in the
alternative body-and-joint model of 2-uniform 5 shown
in fig. 3(c). Figure 3(d) shows the contact polyhedron,
with vertices corresponding to rigid triangular bodies. A
tabular calculation according to (15) is

C6v E 2C6 2C3 C2 3σv 3σd
Γ(v, C) 3 1 3 1 3 1

×Γ(Tx, Ty, Rz) 3 2 0 −1 −1 −1
= 9 2 0 −1 −3 −1

−Γ‖(e, C) −6 0 0 0 −2 0
×Γ(Tx, Ty) 2 1 −1 −2 0 0

= −12 0 0 0 0 0
+Γa 1 −1 1 5 1 1

Γ(m)−Γ(s) −2 1 1 4 −2 0

Fig. 4: (Colour on-line) Deformations of the 2-uniform tiling:
(b) A2(p6) mechanism; (c) B2(p31m) mechanism.

The result Γ(m)−Γ(s) =A2−B1−E1 reveals the same
symmetry-detected A2 mechanism, but now only three
states of self-stress, and in particular no state of self-stress
that is totally symmetric in p6mm. The finite nature of
the equiauxetic A2 mode is therefore apparent from this
more physically insightful choice of model structure.

2-uniform tiling 14. This tiling has the description
(32.4.3.4; 3.4.6.4), p6mm, 6mm(C6v), m− s=−2. The
tiling is illustrated in fig. 4(a) and is included as an
example of the possibility of multiple auxetic pathways.
The tabular calculation

C6v E 2C6 2C3 C2 3σv 3σd
Γ(j) 12 0 0 0 2 2

×Γ(Tx, Ty) 2 1 −1 −2 0 0
= 24 0 0 0 0 0

−Γ(b) −27 0 0 −3 −5 −1
+Γa 1 −1 1 5 1 1

Γ(m)−Γ(s) −2 −1 1 2 −4 0

gives the final result Γ(m)−Γ(s) =A2+B2−A1−B1−
E1, leading to a resolution of the scalar count m− s
into a balance of two mechanisms belonging to distinct
representations A2 and B2 and three states of self-stress
belonging to A1+B2+E. The two mechanisms corre-
spond to distinct symmetry-reducing pathways, shown in
fig. 4(b), (c), with different subgroups of p6mm. The A2
pathway retains p2 symmetry, and the B2 pathway retains
centrosymmetric mirror symmetry cm. Both mechanisms
are found to be finite [19]. The symmetry results indicate
potential blocking of the mechanism by an equisymmetric
state of self-stress, but this does not materialise.

Conclusions. – In this work, symmetry considera-
tions have been used to give a basis for understand-
ing generic isotropic auxetic (equiauxetic) mechanisms of
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2D materials and meta-materials with sufficiently high
symmetry. Explicit criteria for the detection and charac-
terisation of such mechanisms have been given here only
for framework models, but could be extended to any model
with a well-defined notion of counting degrees of free-
dom. For symmetric systems, these criteria are often more
informative than purely combinatorial approaches. When
a system has a unique equiauxetic mode, it will exhibit
auxetic behaviour; in the general case, the equiauxetic
mode may be accompanied by other modes which may
provide alternative non-equiauxetic deformations.
The theory developed here for 2D materials has a 3D

counterpart and the necessary symmetry-extended mobil-
ity criteria have been given in [28]. In 3D the only affine
deformation that preserves cubic symmetry is uniform
expansion/contraction. The problem of enumerating 3D
systems with equiauxetic modes is challenging, although
some constructions are known, see, e.g., fig. 19(b) in [17].
A direction of future exploration beyond the present

periodic approach is for materials where local symmetry
coexists with long-range disorder. Elastomeric polypropy-
lene films [44] are of this type, and Poisson’s ratio and
rigidity of random network structures are of interest in
several other physical systems [45,46].

∗ ∗ ∗
We acknowledge financial support by the DFG through

the Engineering of Advanced Materials Cluster of
Excellence (EAM) and the research group Geometry
and Physics of Spatial Random Systems (GPSRS).
PWF acknowledges a Royal Society/Leverhulme Senior
Research Fellowship.

REFERENCES

[1] Evans K. E. and Alderson A., Adv. Mater., 12 (2000)
617.

[2] Yang W., Li Z.-M., Shi W., Xie B.-H. and Yang M.-
B., J. Mater. Sci., 39 (2004) 3269.

[3] Liu Q., Technical Report, Australian Government,
Department of Defence DSTO-GD-0472 (2006).

[4] Alderson A. and Alderson K. L., Proc. Inst. Mech.
Eng. G, 221 (2007) 565.

[5] Alderson A., Chem. Ind. (2011) 18.
[6] Kabla A. J. and Senden T. J., Phys. Rev. Lett., 102
(2009) 228301.

[7] Zhao S.-C., Sidle S., Swinney H. L. and Schröter
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